Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell.
نویسندگان
چکیده
BACKGROUND The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. METHODS OEC cultured from olfactory nerve rootlets and olfactory bulbs. ESMN was generated by exposing mouse ES cells to retinoic acid and sonic hedgehog. Thirty female rats were used to prepare SCI models in five groups. Control and medium-injected groups was subjected to induce lesion without cell transplantation. OEC or ESMN or both were transplanted into the site of the lesion in other groups. RESULTS The purity of OEC culture was 95%. Motor neuron progenitor markers (Olig2, Nkx6.1 and Pax6) and motor neuron markers (Isl1, Isl2 and Hb9) were expressed. Histological analysis showed that significantly more (P<0.001) spinal tissue was spared in OEC, ESMN and OEC+ ESMN groups but the OEC+ ESMN group had a significantly greater percentage of spared tissue and myelination than other groups (P< 0.05). The numbers of ESMN in co-transplanted group were significantly higher than ESMN group (P<0.05). A significant (P<0.05) recovery of hindlimb function was observed in rats in the transplanted groups. CONCLUSION We found that the co-transplantation of ESMN and OEC into an injured spinal cord has a synergistic effect, promoting neural regeneration, ESMN survival and partial functional recovery.
منابع مشابه
Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملCell Therapy in Spinal Cord Injury: a Mini- Reivew
Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provid...
متن کاملOlfactory ensheathing cells from the nose: clinical application in human spinal cord injuries.
Olfactory mucosa, the sense organ of smell, is an adult tissue that is regenerated and repaired throughout life to maintain the integrity of the sense of smell. When the sensory neurons of the olfactory epithelium die they are replaced by proliferation of stem cells and their axons grow from the nose to brain assisted by olfactory ensheathing cells located in the lamina propria beneath the sens...
متن کاملOlfactory ensheathing cells and spinal cord repair.
The olfactory ensheathing cell is a specialized glial cell that assists in growth of the axons of the olfactory sensory neurons as they are generated and regenerated throughout adult life. There is increasing evidence in animal models that transplantation of olfactory ensheathing cell promotes recovery after transplantation into the injured spinal cord. Olfactory ensheathing cell transplants ha...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Iranian biomedical journal
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2009